Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Баламирзоев НаМилиненторство науки и высшего образования Российской Федерации Должность: Врио рефраБОУ ВО «Дагестанский государственный технический университет» Дата подписания: 24.10.2022 08:43:44

Уникальный программный ключ:

a5eb1d9e7d1213524f01b012053ab2bf7abe6750

РЕКОМЕНДОВАНО к утверждению Директор филиала ДГТУ в г. Кизмре председатель совета Уша = Р.III. Казумов HO, THIEF « O(» 04 2020r.

УТВЕРЖДАЮ Проректор по учебной работе, председатель методического совета ДГГУ Н. Л. Баламирзоев ОИФ полинев 20 2020r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЬ)

Дисципл	ина	Физика			<u> </u>
	наи	менование дисциплин	ы по ООП и код г	по ФГ)C
для н	аправления	(специальности	15.03.05	_	Конструкторско-
технолог	гическое об	беспечение машин	остроительнь	ах пре	нзводств
		шифр и полное наиме	нование паправля	ения (с	пециальности)
по профи	4лю «Техно	логия машиностр	оения»		
факульте	етфі	алиал ФГБОУ ВО	ДГТУ в г. Ки	зляре	
	11	аименование факульт	ета, где ведется л	неципа	нна
кафедра		ЕГО	иСД		
		ювание кафедры, за ко			прина
Квалифи	кация выпу	екника (степень) _	бакал	авр	
			бакалавр (спет	иалист	
Форма об	бучения	очная/заочная .	курс	семе	естр (<u>ы</u>)
		ія, заочная, др.			
Всего тр	удоемкость	в зачетных единиі	цах (часах) <u>10</u>	3ET(3	<u>60 ч.)</u> :
лекции _	85 (час	е); экзамен	1 (13ET	-36 ч.	<u>) </u>
			(семестр)		
практиче	еские (семи	парские) занятия _	51 (час); зач	ет	- (семестр)
паборато	рные занят	ия 34 (час); ca	мостоятельная	работ	а <u>154</u> (часов);
Курсової	й проект (ра	абота, РГР) (с	семестр).		
			4		
Зав. каф	елрой	34	all	3.A.	Яралиева
		пол	шись С		1
	ник УО			Э.В.	Магомаева
			диись	-	

Программа составлена в соответствии с требованиями ФГОС ВО с учетом рекомендаций примерной ООП ВО по направлению 15.03.05 «Конструкторскотехнологическое обеспечение машиностроительных производств» профилю «Технология машиностроения».

Программа одобрена на заседании выпускающей кафедры от 10.03 20 № года, протокол № ..

Зав. выпускающей кафедрой по данному направлению (профилю)

подпись

3. А. Яралиева И.О.Ф.

ОДОБРЕНО

Методическим советом

Филиала 15.03.05

шифр и полное наименование

Конструкторско-технологическое обеспечение машиностроительных

производств

направления

Председатель МК к.т.н. З.А. Яралиева

10.03 2010

АВТОР ПРОГРАММЫ

И.С. Нурмагомедов

подпись

ст. преподаватель, б/с.

уч. степень, уч. звяние

Цели освоения дисциплины

Основными целями учебной дисциплины «Физика» являются:

- формирование базового уровня знаний следующих разделов физики: механики, термодинамики и молекулярной физики, электричества и магнетизма, оптики, основ физики атома и атомного ядра, необходимого для изучения специальных учебных лисциплин:
- формирование базового уровня знаний в методах и средствах измерения основных методов измерения физических величин;
- формирование общей культуры в сфере производственной деятельности, под которой понимается способность использовать полученные знания, умения и навыки для решения инженерных и технологических задач, обеспечивающих высокий уровень качества и безопасности продукции.

Задачами дисциплины являются:

- изучение основных законов следующих разделов физики: механики,
 - термодинамики и молекулярной физики,
 - электро- и магнитостатики, электродинамики,
 - оптики,
 - основ физики атома и атомного ядра;
- получение навыков решения физических задач;
- изучение методов измерений в физике и технике и методов оценки точности измерений.

1. Место дисциплины в структуре ООП.

Дисциплина относится к базовой части цикла Б.2 (Математический и естественнонаучный цикл). Для изучения дисциплины необходимы знания физики, математики в объеме базового компонента средней общеобразовательной школы, также основ высшей математики.

Дисциплина является предшествующей для изучения следующих дисциплин: механика, тепло- и хладотехника, электротехника и электроника, физико-технические процессы в строительстве, безопасность жизнедеятельности.

2. Компетенции обучающихся, формируемые в результате освоения дисциплины.

В результате освоения дисциплины студент должен приобрести знания, умения, владения и профессиональные компетенции.

Знать:

- основные физические явления, фундаментальные понятия, законы и теории следующих разделов физики:
 - механики,
 - термодинамики и молекулярной физики,
 - электричества и магнетизма,
 - оптики,
 - основ физики атома и атомного ядра;
 - основные методы теоретического и экспериментального исследования;
 - методы измерения различных физических величин.

Уметь:

- разобраться в физических принципах, используемых в изучаемых специальных дисциплинах;
- решать физические задачи применительно к изучаемым специальным дисциплинам и прикладным проблемам будущей специальности;
 - измерять основные величины в механике, термодинамике, электротехнике, оптике.

Владеть:

- методами физического описания типовых профессиональных задач и интерпретации полученных результатов;
- методами проведения физических измерений, методами оценки погрешностей при проведении эксперимента;
- методами составления текстов научного стиля (конспекты, аннотации, рефераты, творческие эссе) с использованием различных приемов компрессии текста;

3. Компетенции:

Студент по направлению подготовки «Конструкторско-технологическое обеспечение машиностроительных производств» в соответствии с задачами профессиональной деятельности и целями основной образовательной программы после изучения дисциплины «Физика» должен обладать следующими компетенциями:

- владеет культурой мышления, способен к обобщению, анализу, восприятию информации в области физики (ОК-1);
- способностью использовать основные законы физики в профессиональной деятельности и применять методы теоретического и экспериментального исследования (ОК-10).
- способностью приобретать новые знания, в области физики, используя современные образовательные и информационные технологии (ОК-17).

4. Структура и содержание дисциплины «Физика»

4.1 Содержание дисциплины.

№ п.п.	Раздел дисциплины.			Bı	•			Формы	теі	кущего
	Тема лекции и вопросы)a	раб	работы, включая		контроля		успе-	
			СТГ	сам	остоя	тельн	іую	ваемости	(по	срокам
		T.	семестра	рабо	ту ст	удент	ов и	текущих	атте	стаций
		Мес	ce	тру	/доем	кость	(В	в семестр	e).	Форма
		Семестр	КIС				промежут	очно	рй	
			Неделя	,		аттестаци	И	(по		
			H			семестрам	1)			
				ЛК	П3	ЛБ	CP			
1.	Лекция 1. Тема: Элементы	1	1	2			4			
	кинематики, элементы динамики.									
	1. Материальная точка, система									
	отсчета.									
	2. Траектория движения. Вектор									
	перемещения.									
	3. Скорость и ускорение частицы.									
	Скалярные и векторные велич.									

2.	Лекция 2. Тема: Элементы	1	2	2	2	2	4	
	кинематики, элементы динамики. 1. Движение частицы по окружности. Угловая скорость и угловое ускорение. 2. Основные законы классической механики. 3. Связь между линейными т угловыми величинами.							
3.	Лекция 3. Тема: Законы сохранения в механике 1. Замкнутая система. Импульс тела. Закон сохранения импульса. Импульс силы. 2. Энергия, работа, мощность.	1	3	2			4	
4.	Лекция 4. Тема: Законы сохранения в механике 1. Консервативные силы. Потенциальная энергия частицы в поле. 2. Кинетическая энергия. Полная механическая энергия. 3.Закон сохранения энергии в механике.	1	4	2	2	2	4	Контрольная работа №1
5	Лекция 5. Тема: Элементы механики твердого тела 1. Момент инерции. 2. Кинетическая энергия вращения. 3. Момент силы. Уравнение динамики вращательного движения твердого тела. 4. Момент импульса. Закон сохранения момента импульса.	1	5	2			4	
6	Лекция 6. Тема: Элементы механики твердого тела 1. Момент импульса. 2. Закон сохранения момента импульса. 3. Гироскопы.	1	6	2	2	2	4	
7	Лекция 7. Тема: Тяготение. Элементы теории поля 1. Законы Кеплера. Закон всемирного тяготения. 2. Работа в поле тяготения. 3.Космические скорости.	1	7	2			4	

Ω	П О Т Т	1	0			2	1	<u> </u>
8	Лекция 8. Тема: Тяготение. Элементы теории поля 1. Преобразования Галилея. Механический принцип относительности. 2. Постулаты специальной (частной) теории относительности.	1	8	2	2	2	4	Контрольная работа №2
9	Лекция 9. Тема: Элементы механики сплошных сред 1. Общие свойства газов и жидкостей. 2. Давление жидкости и газа. 3. Кинетическое описание движения идеальной жидкости.	1	9	2			4	
10	Лекция 10. Тема: Элементы механики сплошных сред 1. Стационарное течение жидкости. 2. Неразрывность струи. 3. Уравнение Бернулли.		10		2	2	4	
11	Лекция 11. Тема: Молекулярная физика и термодинамика 1. Статистический и термодинамический методы исследования. 2. Физический смысл температуры. 3. Модель идеального газа. Уравнение Клапейрона - Менделеева.	1	11	2			4	
12	Лекция 12. Тема: Молекулярная физика и термодинамика 1. Уравнение Клапейрона - Менделеева. 2. Основное уравнение молекулярно - кинетической теории газов. 3. Закон распределения скоростей Максвелла. Средняя квадратичная скорость.	1	12	2	2	2	2	Контрольная работа №3
13	Лекция 13. Тема: Молекулярная физика и термодинамика 1. Внутренняя энергия термодинамической системы. 2. Первое начало термодинамики 3. Работа газа при изменении объема.	1	13	2			2	

1 /	Herry 14 Toron Maray -	1	1.4	2	2	2	2	
14	Лекция 14. Тема: Молекулярная	1	14	2	2	2	2	
	физика и термодинамика							
	1. Теплоемкость вещества.							
	Удельная теплоемкость. Молярная							
	теплоемкость.							
	2. Испарение, сублимация,							
	плавление и кристаллизация.							
	3. Аморфные тела.							
15	Лекция 15. Тема: Электростатика.	1	15	2			2	
	1. Электрическое поле.							
	2. Напряженность электрического							
	поля точечного заряда.							
	3. Теорема Гаусса и ее применение							
	к расчету поля.							
16	Лекция 16. Тема: Электростатика.	1	16	2	2	2	4	
	1. Потенциал. Эквипотенциальные							
	поверхности.							
	2. Потенциал поля точечного							
	заряда и системы зарядов.							
	3. Связь потенциала и							
	напряженности электрического							
	поля.							
17	Лекция 17. Тема: Электрическое	1	17	2	1	1	4	
	поле в веществе							
	1. Поляризация диэлектриков.							
	2.Емкость. Конденсаторы.							
	3. Энергия электрического поля.							
				34	17	17	60	Зачет
1	Лекция 1. Тема: Постоянный	2	1	2		2	4	
1	электрический ток.	_	1			_	'	
	1 Сила и плотность тока.							
	2.Сторонные силы. ЭДС.							
	Напряжение.							
	3. Сопротивление. Законы Ома.							
2	Лекция 2. Тема: Постоянный			2	2		4	
	электрический ток.							
	1 Работа и мощность тока.							
	2.Ток в металлах,							
	3.Ток вакууме и газах.							
3	Лекция 3. Тема: Магнитное поле.	2	3	2		2	4	
	1.Характеристики магнитного поля.							
	2. Закон Био-Савара-Лапласа.							
	3 Сила Ампера, сила Лоренца.							
4	Лекция 4. Тема: Магнитное поле.	2	3	2	2		4	
.	1. Теорема о циркуляции вектора В	~		_	_		•	Контрольная работа
	2. Магнитное поле в веществе.							No1
	3. Магнитный поток.							
	o. manimini norok.	I	ĺ		I	Ì		
	4. Работа, совершаемая при							
	4. Работа, совершаемая при перемещии тока в магнитном поле.							

5	Лекция 5. Тема: Магнитное поле. 1.Явление электромагнитной индукции. Закон Фарадея. 2.Индуктивность контура. 3. Самоиндукция.	2	5	2		2	4	
6	Лекция 6. Тема: Магнитное поле. 1. Взаимная индукция. Трансформаторы. 2. Энергия магнитного поля. 3. Уравнения Максвелла.	2		2	2		4	
7	Лекция 7. Тема: Колебания и волны. 1. Механические колебания. 2. Электромагнитные колебания. 3. Шкала электромагнитных волн.	2	7	2		2	4	Контрольная работа №2
8	Лекция 8. Тема: Колебания и волны. 1. Упругие волны. 2. Получение электромагнитных волн. Опыты Герца. 3. Уравнения Максвелла. 4. Применение электромагнитных волн.	2	7	2	2		4	J \ ⊻2
9	Лекция 9. Тема: Квантовая природа излучения. 1. Интерференция света. Условия максимума и минимума интерференции. 2. Методы наблюдения интерференции света. 3. Интерференция света в тонких пленках.	2	9	2		2	4	
10	Лекция 10. Тема: Квантовая природа излучения. 1. Интерференция света. Кольца Ньютона. 2. Применение интерференции света. 3.Просветление оптики.	2	10	2	2		2	
11	Лекция 11. Тема: Дифракция света. 1.Принцип Гюйгенса-Френеля. 2. Метод зон Френеля. Дифракция Френеля на круглом отверстии и диске. 3.Дифракция Фраунгофера.	2	11	2		2	2	Контрольная работа №3

12	Лекция 12. Тема: Взаимодействие электромагнитных волн с веществом. 1. Дисперсия света. 2. Поглощение (абсорбция) света. 3. Эффект Доплера.	2	12	2	2		2	
13	 Лекция 13. Тема: Поляризация света. 1. Естественный и поляризованный свет. 2. Поляризационные призмы и поляроиды. 3. Вращение плоскости поляризации. 	2	13	2	2	2	2	
14	Лекция 14. Тема: Тепловое излучение. 1. Характеристики теплового излучения. Закон Кирхгофа. 2. Законы Стефана—Больцмана и смещения Вина. 3. Формулы Рэлея-Джинса и Планка.	2	14	2	2		4	
15	Лекция 15. Тема: Явление фотоэффекта. 1. Виды фотоэффекта. 2. Законы внешнего фотоэффекта. 3. Уравнение Эйнштейна для внешнего фотоэффекта.	2	15	2		2	4	
16	Лекция 16. Тема: Давление света. 1. Энергия и импульс фотона. 2. Давление света. 3. Эффект Комптона	2	16	2	2		4	
17	Лекция 17. Тема: Элементы квантовой физики атомов. 1. Модели атома Томсона и Резерфорда. 2. Линейчатый спектр атома водорода. 3. Формула Бальмера. Постоянная Ридберга.	2	17	2	1	1	4	
				34	17	17	60	Экзамен - 36ч.
Итого								

1	п т п	2	1	2	_		4	
1	Лекция 1. Тема: Элементы кван-	3	1	2	2		4	
	товой физики атомов.							
	1. Модели атома Томсона и Резер-							
	форда.							
	2. Линейчатый спектр атома							
	водорода.							
	3. Формула Бальмера. Постоянная							
	Ридберга.	_						
2	Лекция 2. Тема: Элементы кван-	3	3	2	2	4	4	
	товой физики атомов.							
	1. Постулаты Бора.							
	2. Опыты Франка и Герца.							
	3. Спектр атома водорода по Бору.							
	4. Оптические квантовые генераторы							
3	Лекция 3. Тема: Атом. Атомное	3	5	2	2		4	
	ядро.							
	1. Строение атомного ядра.							
	2. Дефект массы и энергия связи							
	ядра.							
	3. Рентгеновские спектры.							
4	Лекция 4. Тема: Атом. Атомное	3	7		2		2	
	ядро.							
	1. Ядерные силы.							
	2. Модели ядра.							
	3. Радиоактивное излучение. α-, β-							
	, ү- распад.							
5	Лекция 5. Тема: Радиоактивный	3	9	2	2		4	
	распад.							
	1.Закон радиоактивного распада							
	2. Правила смещения.							
	3. Методы регистрации излучений.							
	_							
	Лекция 5. Тема: Элементы физики	3	11	2	2		4	
	твердого тела.							
	1.Понятие о зонной теории твердых							
	тел.							
	2. Металлы, диэлектрики и							
	полупроводники по зонной							
	теории.							
	3.Проводимость полупроводников.							
	Лекция 6. Тема:	3	13	2	2		2	
	Термоэлектрические явления и их			_	_		_	
	применение.							
	1. Явление Зеебека.							
	2. Явление Пельтье.							
	3. Явление Томсона.							
	3. 71bheime 10meona.							
]			

	Лекция 7. Тема: Полупроводниковые выпрямители и усилители. 1.Контакт металл-полупроводник. 2.Контакт электронного и дырочного полупроводников. 3. Полупроводниковые диоды и триоды.	3	15	2	2		4	
	Лекция 8. Тема:Элементы физики элементарных частиц. 1. Космическое излучение. 2. Мюоны и их свойства. 3. Мезоны и их свойства.	3	17	2	2		4	
	Лекция 9. Тема:Элементы физики элементарных частиц. 1.Классификация элементарных частиц. 2.Кварки	3	18	2	1		2	
Итого				17	17		34	
				85	51	34	154	Зачёт

4.2 Содержание лабораторных и практических занятий

$N_{\underline{0}}$	№ лекции из	Наименование	Количест	Рекомендуемая литература
п/п	рабочей	лабораторного занятия	во часов	и методические разработки
	программы			(№ источника из списка
				литературы)
		Семестр І		
1	Лекции 1-2	Оценка погрешностей	4	1,2,3
		измерений		
2	Лекции 2-5	Изучение основного закона	8	1,2,3,7
		вращательного движения		
3	Лекции 4-6	Определения момента	8	1,2,3,7
		инерции маятника		
		Максвелла.		
		Определение скорости пули		
		с помощью маятника.		
4	Лекции 6-7	Определение показателя	8	1,2,3,7,11
		степени в уравнении		
		Пуассона методом Клемана-		
		Дезорма		
5	Лекции 8-9	Исследование моделей	6	

		электростатического поля		
Ито	ГО	-	34	
		Семестр II		
6	Лекции 1-2	Теория погрешностей	4	1,2,3,7,10
7	Лекции 9-12	Определение удельного	8	1,2,3,7,8
		сопротивления проводника		
		Изучение постоянного		
		магнитного поля		
8	Лекции 13-14	Определение длины	8	1,2,3,7,9
		световой волны при помощи		
		дифракционной решетки		
		Изучение интерференции		
9	Лекция 15	Световых волн	6	1 2 2 7 8
9	лекция 15	Изучения явления	6	1,2,3,7,8
10	Лекции 16-17	фотоэлектрического эффекта Изучение спектра атома	8	1 2 2 7 0 12
10	лекции 10-17	водорода. Определение	0	1,2,3,7,9,12
		постоянной Ридберга, массы		
		электрона и радиуса первой		
		Боровской орбиты		
Ито	ΓΟ	poposekon oponisi	34	
No	№ лекции из	Наименование	Количест	Рекомендуемая литература
Π/Π	рабочей	практического занятия	во часов	и методические разработки
	программы			(№ источника из списка
	1 1			литературы)
		Семестр І	I	1 7
11	Лекция 1	Элементы кинематики,	3	1,2,3,4,5,10
		элементы динамики		
12	Лекция 2	Законы сохранения в	2	1,2,4,6,10
		механике		
13	Лекция 3	Элементы механики	2	1,2,5,6,9
		твердого тела		
14	Лекция 4	Тяготение. Элементы теории	2	1,2,4,5,12
		поля	_	
15	Лекция 5	Элементы механики	2	1,2,5,6,12
1.5	T (5	сплошных сред		12250012
16	Лекции 6, 7	Молекулярная физика и	4	1,2,3,5,8,9,12
17	П	термодинамика	2	124610
17	Лекции 8-9	Электростатика, постоянный	2	1,2,4,6,10
I/m a		ток	17	
Ито	10	Carrage II	17	
18	Лекции 10-11	Семестр II Электрическое и магнитное	6	1,2,3,4,5,10
10	лекции 10-11	<u> </u>	O	1,2,3,4,3,10
		поля в вакууме и в веществе.		
19	Лекция 12	Основы классической	2	1,2,4,6,10
17	локции 12	электродинамики		1,2,7,0,10
20	Лекция 13	Волновая оптика	4	1,2,5,6,9
21	Лекции 14-15	Квантовая природа	2	1,2,4,5,12
1	710KHIII 17 13	излучения	_	1,2,1,0,12
22	Лекции 16-17	Основы квантовой природы	2	1,2,5,6,12
		трироды		-,-,-,-,-

		атома		
23	Лекции 18	Элементы физики атомного	1	1,2,3,5,8,9,12
		ядра и элементарных частиц		
Ито	ГО		17	

4.3 Тематика для самостоятельной работы студента

No	Тематика по	Количество	Рекомендуемая литература и	Форма
Π/Π	содержанию	часов из	источники информации	контроля
12/12	дисциплины выделенная	содержания		CPC
	для самостоятельного	дисциплины		
	изучения	A		
1	Элементы кинематики и	12	Трофимова Т.И. Курс	лаб. занятия
	динамики.		физики. – М.: Высшая	практ.
	Закон сохранения		школа, 2010г	занятия
	момента импульса.		Савельев И.В. Курс физики,	3611711171
	Космические скорости.		Т I, II, III., издат. Лань,	
	Неинерциальные		2009г	
	системы отсчета. Силы			
	инерции. Свободные			
	оси. Гироскоп.			
2	Элементы специальной	10	Трофимова Т.И. Курс	лаб. занятия
	(частной) теории	10	физики. – М.: Высшая	практ.
	относительности.		школа, 2010г	практ. занятия
	Понятие		Савельев И.В. Курс физики,	контр.
	одновременности.		Т I, II, III., издат. Лань,	работа
	Закон массы и энергии		2009r	раоота
3	Элементы механики	10	Трофимова Т.И. Курс	лаб. занятия
	сплошных сред.	10	физики. – М.: Высшая	практ.
	Упругие деформации и		школа, 2010г	занятия
	напряжения.		Савельев И.В. Курс физики,	эшини
	Пластическая		Т I, II, III., издат. Лань,	
	деформация.		2009r	
	Предел прочности.			
4	Молекулярная физика и	10	Трофимова Т.И. Курс	лаб. занятия
	термодинамика.		физики. – М.: Высшая	практ.
	Явление переноса:		школа, 2010г	занятия
	а) диффузия,		Савельев И.В. Курс физики,	контр.
	б) теплопроводность,		Т I, II, III., издат. Лань,	работа
	в) вязкость.		2009Γ	•
5	Реальные газы,	12	Трофимова Т.И. Курс	лаб. занятия
	жидкости и твердые		физики. – М.: Высшая	практ.
	тела.		школа, 2010г	занятия
	Свойства жидкостей.		Савельев И.В. Курс физики,	
	Поверхностное		Т I, II, III., издат. Лань,	
	натяжение. Смачивание.		2009Γ	
	Капиллярные явления.			
6	Электростатика.	14	Трофимова Т.И. Курс	лаб. занятия
	Применение теоремы		физики. – М.: Высшая	практ.
	Гаусса к расчету поля.		школа, 2010г	занятия
	Сегнетоэлектрики.		Савельев И.В. Курс физики,	контр.
	Конденсаторы.		Т I, II, III., издат. Лань,	работа
	Плотность энергии		2009Γ	-
	*			-

	электростатического			
	поля.			
7	Постоянный электрический ток. Правила Кирхгофа. Несамостоятельный газовый разряд. Самостоятельный газовый разряд. Плазма.	14	Трофимова Т.И. Курс физики. – М.: Высшая школа, 2010г Савельев И.В. Курс физики, Т I, II, III., издат. Лань, 2009г	лаб. занятия практ. занятия
8	Магнитное поле. Магнитное поле соленоида. Взаимная индукция. Трансформаторы. Ферромагнетики. Кривая намагничивания. Гистерезис. Точка Кюри.	12	Трофимова Т.И. Курс физики. – М.: Высшая школа, 2010г Савельев И.В. Курс физики, Т I, II, III., издат. Лань, 2009г	лаб. занятия практ. занятия контр. работа
9	Основы теории Максевелла для электромагнитного поля. Фарадеевская и Максевелловская трактовка явления электромагнитной индукции.	12	Трофимова Т.И. Курс физики. – М.: Высшая школа, 2010г Савельев И.В. Курс физики, Т I, II, III., издат. Лань, 2009г	лаб. занятия практ. занятия
10	Физика колебаний и волн. Сложение вза-имно-перпендикулярных колебаний. Фигуры Лиссажу.	12	Трофимова Т.И. Курс физики. – М.: Высшая школа, 2010г Савельев И.В. Курс физики, Т I, II, III., издат. Лань, 2009г	лаб. занятия практ. занятия контр. работа
11	Квантовая природа излучения. Кольца Ньютона. Применение интерференции света. Оптическая пирометрия.	12	Трофимова Т.И. Курс физики. – М.: Высшая школа, 2010г Савельев И.В. Курс физики, Т I, II, III., издат. Лань, 2009г	лаб. занятия практ. занятия
12	Элементы квантовой физики атомов. Опыты Франка и Герца. Опыты Девисона и Джермера. Лазеры.	12	Трофимова Т.И. Курс физики. – М.: Высшая школа, 2010г Савельев И.В. Курс физики, Т I, II, III., издат. Лань, 2009г	лаб. занятия практ. занятия
13	Атом. Атомное ядро. Методы регистрации излучений. Ядерная энергетика.	12	Трофимова Т.И. Курс физики. – М.: Высшая школа, 2010г Савельев И.В. Курс физики, Т I, II, III., издат. Лань, 2009г	лаб. занятия практ. занятия контр. работа
Ито	ΓΟ	154		

5. Образовательные технологии, используемые при изучении дисциплины.

Обучение студентов подразумевает использование как традиционных групповых методов подачи материала: лекций, практических занятий, лабораторных работ, консультаций, так и интерактивных форм.

Объем аудиторных занятий регламентируется учебными планами.

В качестве форм активного обучения на лабораторных работах проводятся тренинги. Тренинг — вид учебной подготовки студента, заключающийся в закреплении приобретенных на занятиях знаний и умений по изучаемой теме на примере решения или анализа профессионально-ориентированных вопросов. В обсуждении вопроса, предлагаемого преподавателем, участвует вся группа. Подготовка к тренингам производится в пределах времени, выделенного на подготовку к соответствующей лабораторной работе.

На практических занятиях проводятся экспериментальные работы по методическим указаниям. В целом, применяются следующие эффективные и инновационные методы обучения: ситуационные задачи, деловые игры, групповые формы обучения, исследовательские методы обучения, поисковые методы и т.д.

Исследовательский метод обучения применяется на практических занятиях и обеспечивает возможность организации поисковой деятельности обучающих по решению новых для них проблем, в процессе которой осуществляется овладение обучающими методами научного познания и развития творческой деятельности.

Компетентностный подход внимание на результатах образования, причем в качестве результата рассматривается не сумма усвоенной информации, а способность человека действовать в различных проблемных ситуациях.

Междисциплинарный подход применяется в самостоятельной работе студентов, позволяющий научить студентов самостоятельно «добывать» знания из разных областей, группировать их и концентрировать в контексте конкретной решаемой задачи.

Проблемно-ориентированный подход применяется на лекционных занятиях, позволяющий сфокусировать внимание студентов при анализе и разрешении какой-либо конкретной проблемной ситуации, что становится отправной точкой в процессе обучения.

Удельный вес занятий проводимых интерактивных формах, составляет не менее 20% аудиторных занятий.

Активные формы обучения.

№ п/п	Разделы	Темы и применяемые активные формы обучения и другие образовательные технологии.		
1	Механика			
	Цель: Контроль усвоения изученного материала по теме «Механика»	Законы классической и релятивистской механики (тестирование)		
	Цель: Формирование у студентов понятия о связи изучаемой дисциплины с практической деятельностью человека.	Место гравитации в практической деятельности человека (тренинг по тематике лабораторной работы)		
2	Молекулярная физика			
	Цель: Контроль усвоения изученного материала по теме «Молекулярная физика и термодинамика»	Основы молекулярной физики и термодинамики (тестирование)		
3	Электричество и магнетизм			
	Цель: Контроль усвоения изученного материала по теме «Электричество и магнетизм»	Основные законы электро- и магнитостатики и классической электродинамики (тестирование)		

	Цель: Ознакомление с принципами разогрева	Проводники и диэлектрики в переменных
	тел с помощью высокочастотного	электрическом и магнитном полях (тренинг по
	электромагнитного поля	тематике лабораторной работы)
4	Оптика	
	Цель: Контроль усвоения изученного	Волновая оптика и квантовая природа
	материала по теме «Оптика»	излучения (тестирование)
5	Основы физики атома	
	Цель: Контроль усвоения изученного	Основы физики атома (тестирование)
	материала по теме «Основы физики атома»	
6	Основы физики атомного ядра	
	Цель: Контроль усвоения изученного	Основы физики ядра (тестирование)
	материала по теме «Основы физики ядра»	

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов.

Варианты входной контрольной работы

Вариант 1

- 1. Автобус движется равнозамедленно с ускорением 0,5 м/с2 с начальной скоростью 54 км/час. Через сколько времени от начала торможения он остановится?
- 2. ЭДС аккумулятора 2,4 В. Напряжение на зажимах при токе в цепи 2А равно 1,84 В. Найти внутреннее сопротивление аккумулятора.
- 3. Найти плотность водорода при температуре 15 °C и давлении 730 мм. рт. ст.
- 4. Законы преломления света. Полное отражение.

Вариант 2

- 1. Теплоход двигался равноускоренно из состояния покоя с ускорением 0,1 м/с2, достигает скорости 18 км/ч. За какое время эта скорость достигнута? Какой путь за это время пройден?
- 2. ЭДС батареи 6 В, внутреннее сопротивление 0,5 Ом, внешнее сопротивление цепи 11,5 Ом. Определить ток и падение напряжения на внешней и внутренней частях цепи.
- 3. Газ при 15 °C и давлении 105 Па занимает объем 2 л. Привести объем газа к нормальным условиям.
- 4. Фотоэлектрический эффект. Законы фотоэффекта.

Вариант 3

- 1. Корабли находятся на расстоянии 1 км один от другого. Масса каждого корабля 5х104 т. Определить силу притяжения между кораблями.
- 2. Какой должна быть сила тока в обмотке дроселя с индуктивностью 500 мГн, чтобы энергия поля оказалась равной 1 Дж?
- 3. Определить энергию фотона, длина волны которого равна 6000 A°. Постоянная Планка 6,63х10-34 Джхс.
- 4. Давление. Единица давления. Закон Паскаля для жидкостей и газов.

Вариант 4

- 1. До какой высоты поднимается мяч массой 300 г, если ему при бросании вертикально вверх сообщена энергия 60 Дж?
- 2. По железному проводу диаметром 1,5 мм и длиной 14,2 м идет ток 2,25 А при напряжении на концах провода 1,8 В. Каково удельное сопротивление железа?

- 3. При какой частоте волны энергия фотона была бы равна 3х10-19 Дж?
- 4. Электрическое поле. Напряженность электрического поля.

Перечень вопросов для текущих контрольных работ. Контрольная работа № 1 I семестр

- 1. Перемещение, скорость, ускорение. Единицы измерения скорости и ускорение.
- 2. Ускорение при криволинейном движении. Тангенциальная и нормальная составляющие ускорения.
- 3. Угловая скорость, угловое ускорение. Связь между векторами линейных и угловых скоростей и ускорений.
- 4. Законы Ньютона, их физическое содержание и взаимная связь.
- 5. Инерциальные системы координат. Механический принцип относительности. Преобразования Галилея.
- 6. Импульс. Закон сохранения импульса. Принцип реактивного движения.
- 7. Работа и мощность. Единицы измерения. Работа переменной силы.
- 8. Кинетическая и потенциальная энергии. Закон сохранения энергии в механике.
- 9. Абсолютно твердое тело. Центр инерции. Вращение твердого тела вокруг неподвижной оси.
- 10. Момент силы. Момент импульса. Закон сохранения момента импульса.
- 11. Момент инерции твердого тела. Теорема Штейнера.

Контрольная работа № 2 І семестр

- 1. Основной закон динамики вращательного движения.
- 2. Виды и категории сил в природе. Консервативные и неконсервативные силы.
- 3. Сила трения. Классификация основных видов трения.
- 4. Сила тяготения. Закон всемирного тяготения. Поле тяготения. Центральные силы.
- 5. Применение законов сохранения к упругому и неупругому удару шаров.
- 6. Давление в неподвижных жидкостях и газах. Уравнение неразрывности для несжимаемой жилкости.
- 7. Вязкость и методы его измерения.
- 8. Колебание. Уравнение свободных колебаний без трения. Пружинный, физический и математический маятники.
- 9. Гармонический осциллятор. Энергия гармонического осциллятора.
- 10. Уравнение затухающих и вынужденных колебаний и их решения.
- 11. Логарифмический декремент затухания. Векторная диаграмма.
- 12. Механика жидкостей. Уравнение неразрывной струи.

Контрольная работа № 3 І семестр

- 1. Уравнение Бернулли и следствие из него.
- 2. Вязкость, движение тел в жидкостях и газах.
- 3. Электрическое поле в вакууме. Напряженность поля. Принцип суперпозиции полей.
- 4. Диполь. Напряженность поля диполя не оси и на прямой, проходящей через центр диполя перпендикулярно к его оси..
- 5. Линии напряженности. Поток вектора Е. Теорема Гаусса. Теорема Гаусса.
- 6. Теорема Гаусса. Напряженность поля бесконечный, однородно заряженной плоскости, двух разноименно заряженных плоскостей.
- 7. Работа сил электростатического поля при перемещении зарядов. Циркуляция вектора Е. Потенциальный характер электрического поля.

- 8. Потенциал. Потенциал текущего заряда и системы точечных зарядов.
- 9. Связь между Е и потенциалом. Градиент потенциала. Эквивалентные поверхности.
- 10. Проводники в электрическом поле. Распределение зарядов. Электростатическая зашита.
- 11. Диэлектрики. Поляризация диэлектриков. Полярные и неполярные диэлектрики.
- 12. Электроемкость. Конденсаторы. Соединение конденсаторов.

Контрольная работа № 1 II семестр

- 1. Постоянный электрический ток. Вектор плотности тока.
- 2. Сторонние силы, ЭДС и разность потенциалов и связь между ними.
- 3. Закон Ома. Сопротивление проводников и его зависимость от температуры.
- 4. Закон Джоуля-Ленца. Дифференциальная форма этого закона. Удельная мощность тока.
- 5. Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции прямого и кругового тока.
- 6. Закон Био-Савара-Лапласа для элемента тока и его применение.
- 7. Проводники с током в магнитном поле. Закон Ампера.
- 8. Действие магнитного поля на движущиеся заряды. Сила Лоренца.
- 9. Контур с током в магнитном поле. Магнитный поток. Работа перемещения проводника с током в магнитном поле.
- 10. Явление электромагнитной индукции ЭДС индукции. Опыт Фарадея и Ленца.
- 11. Закон электромагнитной индукции и его вывод из закона сохранения энергии.

Контрольная работа № 2 II семестр

- 1.Электромагнитные колебания. Колебательный контур. Вынужденные электромагнитные колебания. Резонанс.
- 2. Электромагнитные волны. Дифференциальное уравнение электромагнитной волны. Основные свойства электромагнитных волн.
- 3. Интерференция света. Когерентность и монохроматичность световых волн. Время и длина когерентности.
- 4. Расчет интерференции от двух когерентных источников.
- 5. Интерференция света в тонких пленках. Полосы равной толщины и равного наклона.
- 6. Законы геометрической оптики. Полное внутрение отражение.
- 7. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- 8. Дифракция света от круглого отверстия и круглого диска.
- 9. Дифракция от щели. Дифракционная решетка и ее применение.
- 10. Угловая дисперсия и разрешающая способность дифракционного решетки.
- 11. Поляризация света. Поляризаторы и анализаторы. Закон Малюса.
- 12. Явление двойного лучепреломления и его объяснение. Одноосные кристаллы. Оптическая ось.
- 13. Искусственная анизотропия. Эффект Кэрра. Вращение плоскости поляризации. Сахариметры.
- 14. Тепловое излучение. Законы Кирхгофа и Стефана-Больцмана.
- 15. Распределение энергии в спектре абсолютно черного тела. Закон смещения Вина.

Контрольная работа № 3 II семестр

1. Внешний фотоэффект и его законы.

- 2. Фотон. Уравнение Эйнштейна для внешнего фотоэффекта. Импульс, масса, энергия фотона.
- 3. Опытное обоснование корпускулярно-волнового дуализма свойств вещества Дифракция электронов. Гипотеза де-Бройля.
- 4. Соотношение неопределенностей как проявление корпускулярно-волнового дуализма свойств материи.
- 5. Волновая функция и ее статистический смысл. Уравнение Шредингера для стационарных состояний.
- 6. Опыт Штерна и Герлаха. Спин электрона. Спиновое квантовое число.
- 7. Принцип Паули. Распределение электронов в атоме по энергетическим уровням.
- 8. Поглощение света. Закон Бугера. Цвета тел.
- 9. Спонтанное и вынужденное излучение. Лазеры и их применение.
- 10. Спектральные серии атома водорода. Постулаты Бора. Теория Бора для водородоподобных атомов.
- 11. Физические типы кристаллических решеток.
- 12. Электропроводность металлов и полупроводников.

Перечень экзаменационных вопросов (II семестр)

- 1. Понятие электрического тока. Сила тока, плотность тока. Опытное определение электронной проводимости металлов.
- 2. Вывод закона Ома из классической электронной теории.
- 3. Закон Джоуля-Ленца и Видемана-Франца из классической электронной теории.
- 4. Недостатки классической электронной теории.
- 5. Закон Ома для замкнутой цепи.
- 6. Закон Джоуля-Ленца в интегральной форме. Работа и мощность тока. КПД источника тока.
- 7. Понятие явления термоэлектронной эмиссии. Закон Богуславского-Ленгмюра. Виды эмиссий.
- 8. Опыты, подтверждение существования магнитного поля.
- 9. Понятие вектора В. Закон Био-Савара-Лапласа.
- 10. Закон Ампера.
- 11. Вектор магнитной индукции для прямолинейного проводника с током.
- 12. Вектор В в центре кругового тока.
- 13. Сила взаимодействия между проводниками с током.
- 14. Сила Лоренца.
- 15. Движение заряженных частиц в однородном магнитном поле.
- 16. Закон полного тока. Циркуляция вектора В.
- 17. Магнитный поток. Теорема Гаусса-Остроградского для вектора магнитной индукции.
- 18. Работа магнитного поля.
- 19. Магнитное поле в веществе. Понятие вектора намагничивания. Связь В и Н.
- 20. Виды магнетиков. Кривая намагничивания. Гистерезис.
- 21. Закон электромагнитной индукции, вывод его из закона сохранения энергии.
- 22. Закон электромагнитной индукции из электронной теории.
- 23. Явление самоиндукции. Индуктивность. ЭДС самоиндукции.
- 24. Энергия магнитного поля. Плотность энергии.
- 25. Свободные колебания в контуре без активного сопротивления. Формула Томсона.
- 26. Дифференциальное уравнение для реального колебательного контура. Логарифмический декремент затухания.

- 27. Дифференциальное уравнение для вынужденных электрических колебаний. Векторная диаграмма.
- 28.Понятие переменного тока. Переменный ток протекающий через активное сопротивление, индуктивность и емкость.
- 29.Общая характеристика теории Максвелла для электродинамического поля. Первое уравнение Максвелла в интегральной форме.
- 30. Ток смещения. Уравнение Максвелла.
- 31.Электромагнитные волны. Опыты подтверждающие распространение электромагнитных волн.
- 32. Волновое уравнение для электромагнитной волны.
- 33. Основные свойства электромагнитной волны: скорость, поперечность, связь Е и Н.
- 34. Плотность энергии электромагнитной волны. Вектор Пойнтинга.
- 35. Законы геометрической оптики.
- 36. Формула тонкой линзы, свойства линзы.
- 37. Показатель преломления Среды. Предельный угол полного внутреннего отражения.
- 38. Интерференция света. Когерентность и монохроматичность световых волн. Время и длина когерентности.
- 39. Интерференция света в тонких пленках.
- 40. Дифракция света. Принцип Гюйгенса-Френеля.
- 41. Поляризация света. Поляризаторы и анализаторы. Закон Малюса.
- 42. Внешний фотоэффект и его законы.
- 43. Фотон. Уравнение Эйнштейна для внешнего фотоэффекта. Импульс, масса, энергия фотона.
- 44. Опытное обоснование корпускулярно-волнового дуализма свойств вещества Дифракция электронов. Гипотеза де-Бройля.
- 45. Соотношение неопределенностей как проявление корпускулярно-волнового дуализма свойств материи.
- 46.Волновая функция и ее статистический смысл. Уравнение Шредингера для стационарных состояний.
- 47. Применение уравнения Шредингера к частице в одномерный "потенциальной" яме. Квантование энергии.
- 48.Применение уравнения Шредингера к атому водорода. Главное, орбитальное и магнитное квантовые числа.
- 49. Опыт Штерна и Герлаха. Спин электрона. Спиновое квантовое число.
- 50. Принцип Паули. Распределение электронов в атоме по энергетическим уровням.
- 51. Поглощение света. Закон Бугера. Цвета тел.
- 52. Спонтанное и вынужденное излучение. Лазеры и их применение.
- 53.Спектральные серии атома водорода. Постулаты Бора. Теория Бора для водородоподобных атомов.

Вопросы по физике для проверки остаточных знаний у студентов 1-го курса транспортного факультета (I семестр)

- 1. Перемещение. Траектория. Скорость и ускорение. Единицы измерения.
- 2. Угловая скорость, угловое ускорение. Связь между угловой и линейной скоростями.
- 3. Законы Ньютона, их физическое содержание и взаимная связь.
- 4. Импульс. Закон сохранения импульса.
- 5. Работа, мощность. Работа переменной силы.
- 6. Кинетическая и потенциальная энергии. Закон сохранения энергии в механике.

- 7. Момент инерции. Теорема Штейнера.
- 8. Уравнение динамики вращающегося тела.
- 9. Кинетическая энергия вращающегося тела.
- 10. Работа внешних сил при вращении твердого тела.
- 11. Уравнение свободных колебаний без трения: пружинный, физический и математический маятники. Периоды их колебаний.
- 12. Энергия гармонических колебаний.
- 13. Уравнение затухающих колебаний и его решение.
- 14. Уравнение вынужденных колебаний.
- 15. Продольные и поперечные волны. Уравнение плоской волны.
- 16. Механика жидкостей. Неразрывность струи.
- 17. Уравнение Бернулли и следствие из него.
- 18. Вязкость. Движение тел в жидкостях и газах.
- 19. Преобразование координат Галилея. Относительность механического движения.
- 20. Специальная теория относительности. Постулаты Эйнштейна.
- 21. Преобразование Лоренца. Релятивистский импульс. Релятивистское уравнение динамики.
- 22. Электростатическое поле. Закон сохранения электрического заряда, закон Кулона.
- 23. Напряженность электрического поля. Теорема Гаусса для вектора Е.
- 24. Потенциал точечного заряда и шара в системе Си.
- 25. Работа электростатического поля.
- 26. Связь потенциала и напряженность электрического поля.
- 27. Применение теоремы Гаусса к расчету электрического поля.
- 28. Электрическое поле в диэлектрике. Вектор поляризации.
- 29. Энергия электрического поля. Плотность энергии.

Вопросы по физике для проверки остаточных знаний у студентов І-го курса транспортного факультета (II семестр)

- 1. Сила и плотность тока.
- 2. Закон Ома для однородного проводника. Сопротивление проводника.
- 3. Закон Ома, Джоуля-Ленца в дифференциальной форме.
- 4. Магнитное поле. Вектор магнитной индукции.
- 5.Закон Био-Савара-Лапласа для элемента тока. Вектор магнитной индукции прямолинейного проводника с током.
- 6. Проводники с током в магнитном поле. Закон Ампера.
- 7. Действие магнитного поля на движущиеся заряды. Сила Лоренца.
- 8. Магнитный поток. Работа перемещения проводника с током в магнитном поле.
- 9. Явление электромагнитной индукции. ЭДС индукции. Опыт Фарадея и Ленца.
- 10. Закон электромагнитной индукции и его вывод из закона сохранения энергии.
- 11.Электромагнитные колебания. Колебательный контур. Вынужденные электромагнитные колебания.
- 12. Интерференция света. Когерентность и монохроматичность световых волн.
- 13. Интерференция света в тонких пленках. Полосы равной толщины и равного наклона.
- 14. Законы геометрической оптики. Полное внутреннее отражение.
- 15. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- 16. Дифракция от щели. Дифракционная решетка и ее применение.
- 17. Поляризация света. Поляризаторы и анализаторы. Закон Малюса.
- 18. Искусственная анизотропия. Эффект Кэрра. Вращение плоскости поляризации.

7. Учебно-методическое и информационное обеспечение дисциплины (физика): основная литература, дополнительная литература.

Рекомендуемая литература и источники информации основная и дополнительная

No	Dayara		ополнительная 	Изнатан атра	Голи	TOOTED O
л/п	Виды	Необходимая	Авторы	Издательство	Количество изданий	
11/11	заняти й	учебная, учебно-		и год издания	В	
	И	методическая				На
		(основная и			библио	кафед-
		дополнительная)			теке	pe
		литература,				
1	п п	TC 1	Основная	M D	200	
1	Лк, Пз,	Курс физики	Трофимова	М.: Высшая	300	
	Лб.	T0 1	Т.И.	школа, 2010г	1.70	
2	Лк, Пз,	Курс физики	Детлаф А.А.,	М.: Высшая	150	
	Лб.		Яворский Б.М.	школа, 2009г		
3	Лк, Пз,	Курс физики, Т1,	Савельев И.В.	издат. Лань,	1т. 1364	
	Лб.	T2, T3		2009Γ	2т. 279	
					3 т. 404	
4	Пз	Сборник задач по	Волькенштейн	М. Наука	235	
		общему курсу	B.C.	2010г.		
		физики				
		физики				
5	Пз	Сборник задач по	Трофимова	М. Высшая	165	
3	113	-	Т.И.	школа, 2012г.	103	
		курсу физики	1.11.	школа, 20121.		
6	Лб	Практикум по курсу	Арсланов Д.Э.,	Махачкала,	100	65
U	310	общей физики для	Махмудов	2010Γ.	100	0.5
		технических вузов.	М.А.	20101.		
		Учебное пособие	IVI.A.			
	<u> </u>		<u> </u>			
7	Лк, Пз,	Курс физики	Детлаф А.А.,	М.: Высшая	179	
,	лк, 113, Лб.	туре физики	Яворский	школа, 2000г	117	
	710.		Б.М.,	школа, 20001		
			· · · · · · · · · · · · · · · · · · ·			
			Милковская			
0	Пи По	OSWAN MARS	Л.Б.	Цоужа 1006 ₅	67	
8	Лк, Пз,	Общий курс	Сивухин Д.В.	Наука, 1986г	67	
	Лб.	физики, Т. 1-3	TC.	11 1070	70	
9	Лк, Пз,	Электричество	Калашников	Наука, 1978г	70	
4.0	лб.		С.Г.			
10	Лк, Лз,	Основные	Иродов И.Е.	Высшая	57	
	Лб.	законы механики		школа,		
				1985г		
11	Лк, Пз,	Общая физика. Курс	Бордовский	Изд. Владос-	48	
	Лб.	лекций T1-2	Г.А., Бурсиан	Пресс, 2001г		
			Э.В.			

8. Материально-техническое обеспечение дисциплины (физика).

Для проведения лабораторных занятий используются специализированные лаборатории, приборы и оборудование, учебный класс для самостоятельной работы по дисциплине, оснащенный компьютерной техникой.

№№ п/п материально-техническое обеспечение дисциплины физика 1 маятник Обербека для лабораторной работы по механике «Изучение основн закона вращательного движения» 2 установка для лабораторной работы по механике «Определение момента инергимаятника Максвелла» 3 установка для лабораторной работы по молекулярной физике «Определение показателя степени в уравнении Пуассона методом Клемана –Дезорма» 4 установка для лабораторной работы по молекулярной физике «Определенкоэффициента вязкости жидкости по методу Стокса», 5 установка для лабораторной работы «Определение скорости пули с помощ баллистического крутильного маятника» 6 установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» 7 установка для лабораторной работы по электричеству и магнети «Исследование электростатического поля»	ции ние ние цью из
закона вращательного движения» 2 установка для лабораторной работы по механике «Определение момента инергимаятника Максвелла» 3 установка для лабораторной работы по молекулярной физике «Определеноказателя степени в уравнении Пуассона методом Клемана —Дезорма» 4 установка для лабораторной работы по молекулярной физике «Определекоэффициента вязкости жидкости по методу Стокса», 5 установка для лабораторной работы «Определение скорости пули с помощ баллистического крутильного маятника» 6 установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» 7 установка для лабораторной работы по электричеству и магнетиз «Исследование электростатического поля»	ции ние ние цью из
 установка для лабораторной работы по механике «Определение момента инергмаятника Максвелла» установка для лабораторной работы по молекулярной физике «Определеноказателя степени в уравнении Пуассона методом Клемана –Дезорма» установка для лабораторной работы по молекулярной физике «Определе коэффициента вязкости жидкости по методу Стокса», установка для лабораторной работы «Определение скорости пули с помощ баллистического крутильного маятника» установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» установка для лабораторной работы по электричеству и магнетих «Исследование электростатического поля» 	ние ние цью из
маятника Максвелла» 3 установка для лабораторной работы по молекулярной физике «Определет показателя степени в уравнении Пуассона методом Клемана –Дезорма» 4 установка для лабораторной работы по молекулярной физике «Определет коэффициента вязкости жидкости по методу Стокса», 5 установка для лабораторной работы «Определение скорости пули с помощ баллистического крутильного маятника» 6 установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» 7 установка для лабораторной работы по электричеству и магнетите «Исследование электростатического поля»	ние ние цью из
 установка для лабораторной работы по молекулярной физике «Определе показателя степени в уравнении Пуассона методом Клемана –Дезорма» установка для лабораторной работы по молекулярной физике «Определе коэффициента вязкости жидкости по методу Стокса», установка для лабораторной работы «Определение скорости пули с помощ баллистического крутильного маятника» установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» установка для лабораторной работы по электричеству и магнетих «Исследование электростатического поля» 	ние цью из
показателя степени в уравнении Пуассона методом Клемана –Дезорма» 4 установка для лабораторной работы по молекулярной физике «Определекоэффициента вязкости жидкости по методу Стокса», 5 установка для лабораторной работы «Определение скорости пули с помоц баллистического крутильного маятника» 6 установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» 7 установка для лабораторной работы по электричеству и магнетическогодание электростатического поля»	ние цью из
 4 установка для лабораторной работы по молекулярной физике «Определе коэффициента вязкости жидкости по методу Стокса», 5 установка для лабораторной работы «Определение скорости пули с помон баллистического крутильного маятника» 6 установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» 7 установка для лабораторной работы по электричеству и магнети «Исследование электростатического поля» 	из
коэффициента вязкости жидкости по методу Стокса», 5 установка для лабораторной работы «Определение скорости пули с помоц баллистического крутильного маятника» 6 установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» 7 установка для лабораторной работы по электричеству и магнети «Исследование электростатического поля»	из
 установка для лабораторной работы «Определение скорости пули с помон баллистического крутильного маятника» установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» установка для лабораторной работы по электричеству и магнети «Исследование электростатического поля» 	ИЗ
баллистического крутильного маятника» 6 установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» 7 установка для лабораторной работы по электричеству и магнетического поля»	ИЗ
6 установка для лабораторной работы «Определение модуля упругости растяжения и изгиба» 7 установка для лабораторной работы по электричеству и магнети «Исследование электростатического поля»	
растяжения и изгиба» 7 установка для лабораторной работы по электричеству и магнетиз «Исследование электростатического поля»	
7 установка для лабораторной работы по электричеству и магнети: «Исследование электростатического поля»	зму
«Исследование электростатического поля»	зму
U VIOROVIORVIO THE TOPOMOROMIVOV MORE THE !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	
8 установка для лабораторной работы «Определение удельного сопротивле	RNE
нихромовой проволоки»	
9 установка для лабораторной работы «Изучение работы электронн	ого
осцилогрофа»	
10 установка для лабораторной работы «Проверка закона Богуславского-Ленгмюр	аи
определение удельного заряда электрона»	
11 установка для лабораторной работы «Изучение работы полупроводникої	ых
выпрямителей» 12 установка для лабораторной работы по электричеству и магнетизму «Изуче	
12 установка для лабораторной работы по электричеству и магнетизму «Изучемагнитных свойств ферромагнетика»	ие
13 установка для лабораторной работы по оптике «Определение длины свето:	noŭ.
волны при помощи дифракционной решетки»	зои
14 установка для лабораторной работы по оптике «Изучение явления поляриза	ши
гради установка для засораторной рассты не оптике «изучение явления незиризал света»	(FIFI
15 установка для лабораторной работы по оптике «Определение чувствительно	сти
фотоэлемента»	
16 установка для лабораторной работы по оптике «Изучение интерференции	И
дифракции света с помощью лазера»	
17 установка для лабораторной работы по физике атома «Изучение спектра ато	ма
водорода»	
18 установка для лабораторной работы «Изучение законов теплового излучения»	